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Localized solutions of one-dimensional non-linear
shallow-water equations with velocity c =

√
x

S.Yu. Dobrokhotov and B. Tirozzi

In dimensionless variables, the one-dimensional non-linear system of shallow-water
equations over a non-flat bottom D(x) = c2(x) with elevation component η(x, t) and
velocity v(x, t) is given by ηt + ∂[v(η + D)]/∂x = 0, vt + vvx + ηx = 0. We introduce
a parameter 0 < µ ≪ 1 and say that a function f(y) is localized in the µ-neighbourhood
of a point a > 0 if f(a) = 1 + O(µ) and f(y) = o(µ) for |y − a| > µ1−δ, δ > 0. In the
case when c2(x) = x, we consider the Cauchy problem η|t=0 = η0(x, µ), v|t=0 = v0(x, µ)
for our system, assuming that the initial data η0, v0 are localized in a neighbourhood of
the point x = a. Its solution is used to describe long waves running onto a shore [1], [2].
The following remarkable property (discovered in another form in [1], see also [2]) of the
system under consideration can be established by direct differentiation.

Assertion 1. Let (N(y, τ), U(y, τ)) be a solution of the linearized shallow-water equa-
tions Nτ + ∂(yU)/∂y = 0, Uτ + Ny = 0 such that the system x = y − N(y, τ) +
(1/2)U2(y, τ), t = τ + U(y, τ) possesses a smooth solution (τ(t, x), y(t, x)). Then (η, v) =
(N − (1/2)U2, U)|τ=τ(t,x), y=y(t,x) is a solution of the original non-linear system.

To study solutions of the linear system of equations on the semi-axis y > 0 with singular
coefficient c2 = y we require these solutions to be bounded at y = 0. (This guarantees

that they belong to the domain of the operator
∂

∂y
y

∂

∂y
.) Papers concerning the systems

under consideration focus mainly on oscillating solutions. Localized solutions are studied
in papers by Mazova, Pelinovsky, and their co-authors (see [2] and the bibliography there).
The purpose of this note is to construct simple exact solutions of linear (and hence also
non-linear) shallow-water equations and to interpret some results of [2].

Assertion 2. Let A and b be arbitrary complex numbers with Re b ̸= 0 and let P(k) be
a polynomial. Then the functions

(N0, U0)=

(
Re

A(τ + ib)

(y − (τ + ib)2/4)3/2
, 2Re

A

(y − (τ + ib)2/4)3/2

)

and (N, U) =

(
P

(
∂

∂τ

)
N0, P

(
∂

∂τ

)
U0

)
are continuous for y > −(Re b)2/4 and are

exact solutions of the linear shallow-water equations for y > 0. If the Jacobi matrix
for the transition from (τ, y) to (t, x) is non-singular, then by Assertion 1 these functions
determine a parameter-dependent family of exact solutions of the initial non-linear system.

Although Assertion 2 is proved by direct differentiation, we give another argument to
clarify the derivation and properties of these solutions. If we take b = µβ/

√
a + 2i

√
a

and A = µ3/2(1 + i)/(2
√

a ), then our functions for τ = 0 are localized in an
O(µ)-neighbourhood of the point y = a. Let us consider a more general Cauchy problem
N |τ=0 = V ((y− a)/µ), U |τ=0 = 0 for the linear system. Here V (z) is a function of z with
compact support. Since there is a parameter µ, one can construct an asymptotic formula
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as µ → +0 for the solution of this system (see [2], [3]). As in d’Alembert’s formula,
the asymptotic expression for the solution splits into two waves, one of which runs to the
right, while the second wave NL runs to the left. The amplitude of NL increases sharply
as we approach the point y = 0, and thus it is natural to regard y = 0 as a focal point
and (as in [4]) to determine the trajectory of the ‘peak’ of the wave as traced on the
non-compact ‘Lagrangian manifold’ Λ = {(p, x) ∈ R2

p,y : c(y)p2 = c2(a)}, which consists
of two curves defined on the phase plane R2

p,y. On Λ, the motion of the ‘peak’ of the wave
corresponds to the trajectory Y (t) ≡ (

√
a + γt/2)2, P (t) ≡ −

√
a/(

√
a − γt/2) of the

one-dimensional Hamiltonian system with Hamiltonian function H = c(y)|p|, y(0) = a,
p(0) = 1. The global asymptotic behaviour of the solution of the Cauchy problem

is described (see [5]) by the formula NL(y, τ) =
1

2
Re

( ∫ ∞

0

K
µ/ρ
Λ eitc(a)ρ/µ√ρ Ṽ (ρ) dρ

)
,

where Kh
Λ is the Maslov canonical operator on Λ with parameter h = µ/ρ, initial

point x = a, p = −1, and Ṽ (ρ) =
1

2π

∫ ∞

−∞
e−iρzV (z) dz. We set tcr = 2

√
a/γ. Then

realization of the canonical operator with an additional integration with respect to ρ
(which provides the transition from oscillating functions to decaying ones [5]) yields the
following formulae. If τ < τcr− ε (before the wave reaches the ε-neighbourhood of y = 0),

then NL =
1

2

√
c(a)

c(Y (τ))
V

(
c(a)

µ

y − Y (τ)

c(Y (τ))

)
+ O(µ). If |τ − τcr| < ε (the wave is reflected

from y = 0), then

NL = Re

(
e

iπ
4
√

a
√

πµ

∫ ∞

0

∫ ∞

−∞
e

(
1

p

)√
ρ Ṽ 0(ρ)

p
exp

{
iaρ

µ

[
1

p
−2+

τ√
a

]}
e

ipyρ
µ

}
dp dρ

)
+O(

√
µ )

(1)
(e(q) is a ‘cutoff’ function which is equal to 1 in some neighbourhood of q = 0). If
τ > τcr + ε (after the reflection of the wave from y = 0), then

NL =
1

2

√
c(a)

c(Y (τ))
W

(
c(a)

µ

y − Y (τ)

c(Y (τ))

)
+ O(µ),

where

W (z) = −
√

2

π
Re

(
i

∫ ∞

0

eiρzṼ (ρ) dρ

)
is the Hilbert transform of V (θ), which appears because the Maslov index jumps as the
point (Y (t), P (t)) passes from the lower branch of Λ to the upper branch.

The formula (1) determines the asymptotic behaviour of the solution for all τ . However,
outside a neighbourhood of y = 0, it is clearly more convenient to use the explicit formulae
which can be obtained from (1) by the stationary-phase method for the variable p. One
can sometimes omit the function e(1/p) that guarantees the convergence of the integrals.
Then (1) is an exact solution. In particular, choosing Ṽ (ρ) = A

√
ρ e−βρ, we obtain the

‘base’ solution from Assertion 2. The other solutions are obtained by applying the ‘creation
operator’ ∂/∂τ . The functions of Assertion 2 give an (outstanding and probably unique)
example of a localized wave and a focal point whose interaction is explicitly described in
terms of elementary functions. As µ → 0, the incident wave (properly normalized) becomes
the Dirac δ-function and the reflected wave becomes the Sokhotskii function (there is
a ‘metamorphosis of discontinuity’). We also note that the corresponding function V
describes the profile of the solution of the Cauchy problem for the two-dimensional lin-

earized shallow-water equations with initial data A
(
1+((y−α)/(µb1))

2+(y2/(µb2))
2
)−3/2

,
which are localized in a neighbourhood of the point (y = α, y2 = 0), a ≫ µ (see [6]).
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